A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events

Author:

Imanian HanifehORCID,Hiedra Cobo JuanORCID,Payeur PierreORCID,Shirkhani Hamidreza,Mohammadian AbdolmajidORCID

Abstract

Soil temperature is a fundamental parameter in water resources and irrigation engineering. A cost-effective model that can accurately forecast soil temperature is urgently needed. Recently, many studies have applied artificial intelligence (AI) at both surface and underground levels for soil temperature predictions. In the present study, attempts are made to deliver a comprehensive and detailed assessment of the performance of a wide range of AI approaches in soil temperature prediction. In this regard, thirteen approaches, from classic regressions to well-established methods of random forest and gradient boosting to more advanced AI techniques, such as multi-layer perceptron and deep learning, are taken into account. Meanwhile, great varieties of land and atmospheric variables are applied as model inputs. A sensitivity analysis was conducted on input climate variables to determine the importance of each variable in predicting soil temperature. This examination reduced the number of input variables from 8 to 7, which decreased the simulation load. Additionally, this showed that air temperature and solar radiation play the most important roles in soil temperature prediction, while precipitation can be neglected in forecast AI models. The comparison of soil temperature predicted by different AI models showed that deep learning demonstrated the best performance with R-squared of 0.980 and NRMSE of 2.237%, followed by multi-layer perceptron with R-squared of 0.980 and NRMSE of 2.266%. In addition, the performance of developed AI models was evaluated in extremely hot events since heat warnings are essential to protect lives and properties. The assessment showed that deep learning and multi-layer perceptron methods still have the best prediction. However, their R-squared decreased to 0.862 and 0.859, and NRMSE increased to 6.519% and 6.601%, respectively.

Funder

National Research Council Canada

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3