An Ensemble 3D Convolutional Neural Network for Spatiotemporal Soil Temperature Forecasting

Author:

Yu Fanhua,Hao HuibowenORCID,Li QingliangORCID

Abstract

Soil temperature (ST) plays an important role in agriculture and other fields, and has a close relationship with plant growth and development. Therefore, accurate ST prediction methods are widely needed. Deep learning (DL) models have been widely applied for ST prediction. However, the traditional DL models may fail to capture the spatiotemporal relationship due to its complex dependency under different related hydrologic variables. Hence, the DL models with Ensemble Empirical Mode Decomposition (EEMD) are proposed in this study. The proposed models can capture more complex spatiotemporal relationship after decomposing the ST into different intrinsic mode functions. Therefore, the performance of models is further improved. The results show that the performance of DL models with EEMD are better than that of corresponding DL models without EEMD. Moreover, EEMD-Conv3d has the best performance among all the experimental models. It has the highest R2 ranging from 0.9826 to 0.9893, the lowest RMSE ranging from 1.3096 to 1.6497 and the lowest MAE ranging from 0.9656 to 1.2056 in predicting ST at the lead time from one to five days. In addition, the lines between predicted ST and observed ST are closer to the ideal line (y = x) than other DL models. The results show that our EEMD-Conv3D can better capture spatiotemporal correlation and is an applicable method for predicting spatiotemporal ST.

Funder

Nature Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3