Development of a robust daily soil temperature estimation in semi-arid continental climate using meteorological predictors based on computational intelligent paradigms

Author:

Alizamir MeysamORCID,Ahmed Kaywan Othman,Kim SungwonORCID,Heddam SalimORCID,Gorgij AliReza Docheshmeh,Chang Sun Woo

Abstract

Changes in soil temperature (ST) play an important role in the main mechanisms within the soil, including biological and chemical activities. For instance, they affect the microbial community composition, the speed at which soil organic matter breaks down and becomes minerals. Moreover, the growth and physiological activity of plants are directly influenced by the ST. Additionally, ST indirectly affects plant growth by influencing the accessibility of nutrients in the soil. Therefore, designing an efficient tool for ST estimating at different depths is useful for soil studies by considering meteorological parameters as input parameters, maximal air temperature, minimal air temperature, maximal air relative humidity, minimal air relative humidity, precipitation, and wind speed. This investigation employed various statistical metrics to evaluate the efficacy of the implemented models. These metrics encompassed the correlation coefficient (r), root mean square error (RMSE), Nash-Sutcliffe (NS) efficiency, and mean absolute error (MAE). Hence, this study presented several artificial intelligence-based models, MLPANN, SVR, RFR, and GPR for building robust predictive tools for daily scale ST estimation at 05, 10, 20, 30, 50, and 100cm soil depths. The suggested models are evaluated at two meteorological stations (i.e., Sulaimani and Dukan) located in Kurdistan region, Iraq. Based on assessment of outcomes of this study, the suggested models exhibited exceptional predictive capabilities and comparison of the results showed that among the proposed frameworks, GPR yielded the best results for 05, 10, 20, and 100cm soil depths, with RMSE values of 1.814°C, 1.652°C, 1.773°C, and 2.891°C, respectively. Also, for 50cm soil depth, MLPANN performed the best with an RMSE of 2.289°C at Sulaimani station using the RMSE during the validation phase. Furthermore, GPR produced the most superior outcomes for 10cm, 30cm, and 50cm soil depths, with RMSE values of 1.753°C, 2.270°C, and 2.631°C, respectively. In addition, for 05cm soil depth, SVR achieved the highest level of performance with an RMSE of 1.950°C at Dukan station. The results obtained in this research confirmed that the suggested models have the potential to be effectively used as daily predictive tools at different stations and various depths.

Funder

National Research Foundation of Korea

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference74 articles.

1. Soil respiration in different agricultural and natural ecosystems in an arid region.;L. Lai;PLOS ONE.,2012

2. Short‐term forecasting of soil temperature using artificial neural network;H. Tabari;Meteorological Applications,2015

3. An attention-aware LSTM model for soil moisture and soil temperature prediction;Q. Li;Geoderma,2022

4. Partitioning of evapotranspiration and its relation to carbon dioxide exchange in a Chihuahuan Desert shrubland.;R. L. Scott;Hydrological Processes: An International Journal,2006

5. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments;W. Yin;International journal of biometeorology,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3