Kernel Mixture Correntropy Conjugate Gradient Algorithm for Time Series Prediction

Author:

Xue Nan,Luo XiongORCID,Gao Yang,Wang Weiping,Wang Long,Huang Chao,Zhao Wenbing

Abstract

Kernel adaptive filtering (KAF) is an effective nonlinear learning algorithm, which has been widely used in time series prediction. The traditional KAF is based on the stochastic gradient descent (SGD) method, which has slow convergence speed and low filtering accuracy. Hence, a kernel conjugate gradient (KCG) algorithm has been proposed with low computational complexity, while achieving comparable performance to some KAF algorithms, e.g., the kernel recursive least squares (KRLS). However, the robust learning performance is unsatisfactory, when using KCG. Meanwhile, correntropy as a local similarity measure defined in kernel space, can address large outliers in robust signal processing. On the basis of correntropy, the mixture correntropy is developed, which uses the mixture of two Gaussian functions as a kernel function to further improve the learning performance. Accordingly, this article proposes a novel KCG algorithm, named the kernel mixture correntropy conjugate gradient (KMCCG), with the help of the mixture correntropy criterion (MCC). The proposed algorithm has less computational complexity and can achieve better performance in non-Gaussian noise environments. To further control the growing radial basis function (RBF) network in this algorithm, we also use a simple sparsification criterion based on the angle between elements in the reproducing kernel Hilbert space (RKHS). The prediction simulation results on a synthetic chaotic time series and a real benchmark dataset show that the proposed algorithm can achieve better computational performance. In addition, the proposed algorithm is also successfully applied to the practical tasks of malware prediction in the field of malware analysis. The results demonstrate that our proposed algorithm not only has a short training time, but also can achieve high prediction accuracy.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

University of Science and Technology Beijing - National Taipei University of Technology Joint Research Program

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3