Categorizing Malware via A Word2Vec-based Temporal Convolutional Network Scheme

Author:

Sun Jiankun,Luo XiongORCID,Gao Honghao,Wang Weiping,Gao Yang,Yang Xi

Abstract

AbstractAs edge computing paradigm achieves great popularity in recent years, there remain some technical challenges that must be addressed to guarantee smart device security in Internet of Things (IoT) environment. Generally, smart devices transmit individual data across the IoT for various purposes nowadays, and it will cause losses and impose a huge threat to users since malware may steal and damage these data. To improve malware detection performance on IoT smart devices, we conduct a malware categorization analysis based on the Kaggle competition of Microsoft Malware Classification Challenge (BIG 2015) dataset in this article. Practically speaking, motivated by temporal convolutional network (TCN) structure, we propose a malware categorization scheme mainly using Word2Vec pre-trained model. Considering that the popular one-hot encoding converts input names from malicious files to high-dimensional vectors since each name is represented as one dimension in one-hot vector space, more compact vectors with fewer dimensions are obtained through the use of Word2Vec pre-training strategy, and then it can lead to fewer parameters and stronger malware feature representation. Moreover, compared with long short-term memory (LSTM), TCN demonstrates better performance with longer effective memory and faster training speed in sequence modeling tasks. The experimental comparisons on this malware dataset reveal better categorization performance with less memory usage and training time. Especially, through the performance comparison between our scheme and the state-of-the-art Word2Vec-based LSTM approach, our scheme shows approximately 1.3% higher predicted accuracy than the latter on this malware categorization task. Additionally, it also demonstrates that our scheme reduces about 90 thousand parameters and more than 1 hour on the model training time in this comparison.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3