Large Scale Online Multiple Kernel Regression with Application to Time-Series Prediction

Author:

Sahoo Doyen1ORCID,Hoi Steven C. H.1,Li Bin2

Affiliation:

1. Singapore Management University, Singapore

2. Wuhan University, Wuhan, P. R. China

Abstract

Kernel-based regression represents an important family of learning techniques for solving challenging regression tasks with non-linear patterns. Despite being studied extensively, most of the existing work suffers from two major drawbacks as follows: (i) they are often designed for solving regression tasks in a batch learning setting, making them not only computationally inefficient and but also poorly scalable in real-world applications where data arrives sequentially; and (ii) they usually assume that a fixed kernel function is given prior to the learning task, which could result in poor performance if the chosen kernel is inappropriate. To overcome these drawbacks, this work presents a novel scheme of Online Multiple Kernel Regression (OMKR), which sequentially learns the kernel-based regressor in an online and scalable fashion, and dynamically explore a pool of multiple diverse kernels to avoid suffering from a single fixed poor kernel so as to remedy the drawback of manual/heuristic kernel selection. The OMKR problem is more challenging than regular kernel-based regression tasks since we have to on-the-fly determine both the optimal kernel-based regressor for each individual kernel and the best combination of the multiple kernel regressors. We propose a family of OMKR algorithms for regression and discuss their application to time series prediction tasks including application to AR, ARMA, and ARIMA time series. We develop novel approaches to make OMKR scalable for large datasets, to counter the problems arising from an unbounded number of support vectors. We also explore the effect of kernel combination at prediction level and at the representation level. Finally, we conduct extensive experiments to evaluate the empirical performance on both real-world regression and times series prediction tasks.

Funder

MOE project of Humanities and Social Science

Academic Team Building Plan for Young Scholars fromWuhan University

Fundamental Research Funds for the Central Universities

National Research Foundation Singapore under its AI Singapore

NRF Prime Minister?s Office, Singapore under its International Research Centres in Singapore Funding Initiative

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science

Reference67 articles.

1. Online learning for time series prediction;Anava Oren;COLT,2013

2. The Nonstochastic Multiarmed Bandit Problem

3. Online SVR Training by Solving the Primal Optimization Problem

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3