Author:
Liu Yuan,Luo Hang,Gao Zhe,Xie Haoran,Guo Ru,Wang Fan,Zhou Xuefan,Cao Jun,Zhang Dou
Abstract
Dielectric composites based on ferroelectric ceramics nanofibers are attracting increasing attention in capacitor application. In this work, the sol–gel method and electrospinning technology are utilized to prepare one-dimensional Na0.5Bi0.5TiO3 (NBT) nanofibers, and the influence of electrospinning process parameters such as spinning voltage, liquid supply rate, and collector speed on the morphology and structure of nanofibers are systematically explored. The final optimized parameters include the applied voltage of 20 kV, the solution flow rate of 1 mL/h, and the collector’s rotation speed of 1500 rpm. The optimized NBT nanofibers are introduced into the PVDF polymer matrix for energy storage application. Owing to the enhanced interfacial polarization between PVDF matrix and NBT nanofibers with a high aspect ratio, the NBT–PVDF nanocomposites achieve a high discharge energy density of 14.59 J cm−3 and an energy efficiency of 53.69% at 490 kV mm−1, which are higher than those of pure PVDF, i.e., 10.26 J cm−3 and 48.17% at 420 kV mm−1, respectively. The results demonstrate that the strategy of synthesizing NBT nanofibers using the electrospinning method is of great potential for high-performance dielectric capacitor application.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,General Chemical Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献