Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design

Author:

Pan Hao1ORCID,Li Fei23ORCID,Liu Yao2ORCID,Zhang Qinghua4,Wang Meng5ORCID,Lan Shun1,Zheng Yunpeng1ORCID,Ma Jing1ORCID,Gu Lin4ORCID,Shen Yang1,Yu Pu5ORCID,Zhang Shujun6ORCID,Chen Long-Qing3ORCID,Lin Yuan-Hua1ORCID,Nan Ce-Wen1

Affiliation:

1. State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China.

2. Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, Xi’an Jiaotong University, Xi’an, China.

3. Department of Materials Science and Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA, USA.

4. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.

5. State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.

6. Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, New South Wales, Australia.

Abstract

Ultrahigh energy density dielectric film Dielectrics help hold charge as capacitors and are fundamental energy storage components. Improving energy density and other properties may help these materials be more competitive with batteries for energy storage applications. Pan et al. introduced a specific type of nanodomain structure in a BiFeO 3 -BaTiO 3 -SrTiO 3 solid solution that dramatically increased the energy density. The nanodomains were organized so as to minimize energy loss during polarization switching. The enhancement in the dielectric properties suggests that the strategy may be useful for designing high-performance dielectrics. Science , this issue p. 578

Funder

National Natural Science Foundation of China

US National Science Foundation

the Australian Research Council

National Natural Science Foundation of China-Guangdong Joint Fund

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 639 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3