Formulation of Multicomponent Chrysin-Hydroxy Propyl β Cyclodextrin-Poloxamer Inclusion Complex Using Spray Dry Method: Physicochemical Characterization to Cell Viability Assessment

Author:

Imam Syed SarimORCID,Alshehri SultanORCID,Mahdi Wael A.ORCID,Alotaibi Ahmed M.,Alhwaifi Moath H.,Hussain AfzalORCID,Altamimi Mohammad A.ORCID,Qamar Wajhul

Abstract

The work aimed to enhance chrysin (CHR) water solubility, dissolution, and in vitro antibacterial as well as cell viability. Chrysin binary, as well as ternary inclusion complex, were prepared using the spray drying method. The influence of an auxiliary component (poloxamer; PLX) was also assessed after being incorporated into the chrysin HP βCD complex (CHR-BC) and formed as a chrysin ternary complex (CHR-TC). The phase solubility investigation was carried out in order to assess the complexation efficiency and stability constant. The samples were assessed for the dissolution test, physicochemical evaluation, antibacterial activity, and cell viability tests were also assessed. The results of the phase solubility investigation showed that the stability constant for the binary system (268 M−1) was lower than the ternary system (720 M−1). The complex stability was validated by the greater stability constant value. The dissolution results showed that pure CHR had a limited release of 32.55 ± 1.7% in 60 min, while prepared CHR-TC and CHR-BC both demonstrated maximum CHR releases of 99.03 ± 2.34% and 71.95 ±2.1%, respectively. The dissolution study’s findings revealed that the release of CHR was much improved over that of pure CHR. A study using a scanning electron microscope showed that CHR-TC contains more agglomerated and amorphous components. The higher conversion of crystalline CHR into an amorphous form is responsible for the structural alterations that are observed. After complexation, the distinctive peaks of pure CHR changed due to the complexation with HP βCD and PLX. The antimicrobial and cell viability results revealed improved antimicrobial activity as well as a lower IC50 value than pure CHR against the tested anticancer cell line (MCF7).

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3