Chrysin-Loaded Microemulsion: Formulation Design, Evaluation and Antihyperalgesic Activity in Mice

Author:

Ramalho Ízola Morais de Medeiros,Bezerra Gabriela Suassuna,Ostrosky Elissa Arantes,Ferrari Márcio,Oliveira Verônica da Silva,Wanderley Neto Alcides de Oliveira,Quintans Jullyana de Souza Siqueira,Passos Fabiolla Rocha Santos,Heimfarth Luana,Quintans-Júnior Lucindo JoséORCID,Damasceno Bolívar Ponciano Goulart de Lima,Converti AttilioORCID,de Lima Ádley Antonini NevesORCID

Abstract

Chrysin is a bioactive flavonoid found in pollens, passion flowers, honey, royal jelly, and propolis, which is commonly used as an ingredient in natural food supplements and is primarily responsible for their pharmacological properties. A transparent chrysin-loaded microemulsion (CS-ME) prepared through a ternary phase diagram was evaluated for use as an antihyperalgesic formulation. It was formulated with 40% Labrasol® (surfactant), 5% isopropyl myristate (oil phase) and 55% water (aqueous phase) and classified as an oil-in-water (O/W) microsized system (74.4 ± 15.8 nm). Its negative Zeta potential (−16.1 ± 1.9 mV) was confirmed by polarized light microscopy and dynamic light scattering analysis. In vitro studies in Franz-type static diffusion cells showed that chrysin release from CS-ME followed zero-order kinetics. Oral administration of CS-ME in mice resulted in a statistically significantly reduction (p < 0.05) in carrageenan-induced mechanical hyperalgesia compared to the control group. Treatment with CS-ME also showed anti-inflammatory activity by significantly decreasing the TNF-α level (p < 0.01) and increasing that of IL-10 (p < 0.05) compared to the control group. These results suggest that the proposed microsystem is a promising vector for the release of chrysin, being able to improve its capacity to modulate inflammatory and nociceptive responses.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3