Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate

Author:

Zaguła GrzegorzORCID,Saletnik BogdanORCID,Bajcar Marcin,Saletnik Aneta,Puchalski Czesław

Abstract

Magnetic stimulation of seeds before sowing can have a significant impact on the speed of their germination. Sprouts are sought after by consumers for their high nutrient content. The purpose of the study was to investigate the influence of a pulsed magnetic field on the dynamics of seed germination and on the content of ions in sunflower, cress, and radish sprouts. The research material in the experiment was provided by seeds of sunflower (Helianthus annuus L.), garden cress (Lepidium sativum L.), and garden radish (Raphanus sativus L.) intended for sprouting, which were supplied by PNOS Ożarów Mazowiecki. The research methods involved germinating seeds under strictly defined conditions for 14 days. Then, the mineral composition of the previously mineralised sprout material was determined using emission spectrometry on a ICP-OES iCAP Duo 6500 Termo spectrometer. Greater dynamics of germination were noted in the first half of the growth period in seeds stimulated with a pulsed magnetic field with the parameters 100 µT and 100 Hz. However, the application of the magnetic field produced no increase in the capacity of the seeds to germinate. The research showed an increase in the content of macronutrients in sprouts, such as calcium, magnesium, phosphorus, and sulphur. In the case of the field with parameters of 100 µT and 200 Hz, the effect was similar for both the germination percentage and the accumulation of macronutrients. However, in the case of both frequencies of magnetic field applied, the effect on individual plant seed species was different. Pre-sowing stimulation of seeds with a pulsed magnetic field may affect the rate of seed germination and the content of ions in the sprouts; however, these effects vary in individual plant matrices.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3