Containment and Suppression of Class A Fires Using CO2 Hydrate

Author:

Gaidukova Olga1,Morozov Vladimir2,Volkov Roman1ORCID,Strizhak Pavel1ORCID

Affiliation:

1. Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia

2. Kutateladze Institute of Thermophysics, Novosibirsk 630090, Russia

Abstract

This paper presents the experimental findings on fire containment and suppression by dropping CO2 hydrate granules and tablets on burning solid materials. We used the combustible materials typical of compartment fires—wood, linoleum, and cardboard—to determine the volume and mass of gas hydrate powder necessary for the effective fire suppression. Gaseous emissions were recorded from the combustion with and without fire suppression using hydrates. Conditions were specified in which a fire can be extinguished with minimum air pollution. We also identified the conditions for effective fire containment and suppression using hydrates as compared to water spray, snow, and ice. The necessary volume of hydrate was determined for effective fire suppression in a compartment filled with various materials. Experimental data show that the impact of temperature on the CO2 hydrate decomposition is highly nonlinear. The carbon dioxide hydrate exhibited a much better fire suppression performance than water spray in the course of total flooding of solid combustible materials. It was established that fine water spray failed to reach the lower levels of multi-tier crib fires. Finally, key patterns of total flooding with CO2 hydrate powder were identified when applied to fires.

Funder

National Research Tomsk Polytechnic University

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3