Combustion of Liquid Fuels in the Presence of CO2 Hydrate Powder

Author:

Misyura Sergey1,Morozov Vladimir1ORCID,Donskoy Igor2ORCID,Shlegel Nikita3,Dorokhov Vadim3

Affiliation:

1. Kutateladze Institute of Thermophysics, Novosibirsk 630090, Russia

2. Melentiev Energy Systems Institute SB RAS, Irkutsk 664033, Russia

3. Heat and Mass Transfer Laboratory, National Research Tomsk Polytechnic University, Tomsk 634050, Russia

Abstract

The process of combustion of a liquid fuel layer (diesel, kerosene, gasoline, separated petroleum, and oil) in the presence of CO2 hydrate has been studied. These fuels are widely used in engineering, which explains the great interest in effective methods of extinguishing. Extinguishing liquid fuels is quite a complicated scientific and technical task. It is often necessary to deal with fire extinction during oil spills and at fuel burning in large containers outdoors and in warehouses. Recently, attention to new extinguishing methods has increased. Advances in technology of the production, storage, and transportation of inert gas hydrates enhance the opportunities of using CO2 hydrate for extinguishing liquid fuels. Previous studies have shown a fairly high efficiency of CO2 hydrate (compared to water spray) in the extinction of volumetric fires. To date, there are neither experimental data nor methods for determining the dissociation rate of CO2 hydrate powder at the time of the gas hydrate fall on the burning layer of liquid fuel. The value of the dissociation rate is important to know in order to determine the temperatures of stable combustion and, accordingly, the mass of CO2 hydrate required to extinguish the flame. For the first time, a method jointly accounting for both the combustion of liquid fuel and the dissociation rate of the falling powder of gas hydrate at a negative temperature is proposed. The combustion stability depends on many factors. This paper defines three characteristic modes of evaporation of a liquid fuel layer, depending on the prevalence of vapor diffusion or free gas convection. The influence of the diameter and height of the layer on the nature of fuel evaporation is investigated.

Funder

Ministry of Science and Higher Education of Russia

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3