Author:
Ma Qiuju,Guo Yuhao,Zhong Mingyu,You Jingfeng,He Ya,Chen Jianhua,Zhang Zhaokun
Abstract
Combustible gases often lead to fire and explosion accidents due to their unsafe characteristics. Furthermore, their explosion limits are influenced by various factors. In the industrial production process, the operating unit is often in a high-temperature environment, and the multi-component gas explosion limits under this condition are difficult to determine. Therefore, it is urgent to have a universal theoretical prediction model to rapidly predict the multi-component gas explosion limits at high temperatures. This paper proposes a theoretical prediction model for the lower explosion limit of multi-combustible gases containing inert gases at different temperatures based on the heat balance equation and radiation heat loss, which can be used to solve the lower explosion limit of the “multiple combustible gases + multiple inert gases” mixture at different temperatures. It solves the explosion limits of methane, ethylene, propane, and propylene mixed with nitrogen with relative errors of 2.66%, 5.98%, 6.82%, and 5.88%, respectively, compared with experimental data. It also obtained theoretically predicted gas explosion limits for methane, ethylene, propane, and propylene mixed with carbon dioxide, with relative errors of 3.24%, 5.13%, 6.19%, and 5.58%, respectively. Although the reference experimental data made the model validation somewhat limited, validation with data for multiple single gases and temperatures still gave the model considerable reliability.
Funder
Key Research and Development Program of Jiangxi Province
Key Laboratory of Fire Emergency and Rescue Equipment of MEM
Fundamental Research Funds for the Central Universities
Subject
Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献