Abstract
Isothermal compression behaviors of as-extruded AA 2055 alloy (T6 state) were studied at temperature of 320, 380, 440 and 500 °C with strain rate of 0.001, 0.01, 0.1 and 1 s−1 by a Gleeble-3800 testing machine. A modified Johnson–Cook model fitted by polynomial and power-exponential functions were established to describe the flow stress of the alloy. The constitutive models fitted by higher-order polynomials were more accurate than the ones fitted by second-order polynomial and power-exponential functions. The constitutive model fitted by a fourth-order polynomial was chosen for the optimal constitutive model in order to balance the prediction accuracy and model complexity. The modified Johnson–Cook constitutive model could predict the flow stress well, especially in high-temperature zone (around 500 °C) and low-temperature zone (around 320 °C). The dynamic precipitation and dissolution of the T1 phase during hot compression were discussed. The unusual dynamic precipitation of the T2 phase was investigated during hot compression by XRD and TEM. The massive dense fine precipitates effectively pinned dislocations or subgrain boundaries to accelerate DRV but suppressed DRX, leading to a low frequency of HAGBs in compressed samples.
Funder
National Key Research and Development Program of China
key deployment projects of the Chinese Academy of Sciences
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Changchun Science and Technology Development Plan Project
Youth Science and Technology Research Fund in Shanxi
Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献