Microstructure Evolution, Constitutive Modelling, and Superplastic Forming of Experimental 6XXX-Type Alloys Processed with Different Thermomechanical Treatments

Author:

Mochugovskiy Andrey G.ORCID,Mosleh Ahmed O.ORCID,Kotov Anton D.ORCID,Khokhlov Andrey V.,Kaplanskaya Ludmila Yu.,Mikhaylovskaya Anastasia V.

Abstract

This study focused on the microstructural analysis, superplasticity, modeling of superplastic deformation behavior, and superplastic forming tests of the Al-Mg-Si-Cu-based alloy modified with Fe, Ni, Sc, and Zr. The effect of the thermomechanical treatment with various proportions of hot/cold rolling degrees on the secondary particle distribution and deformation behavior was studied. The increase in hot rolling degree increased the homogeneity of the particle distribution in the aluminum-based solid solution that improved superplastic properties, providing an elongation of ~470–500% at increased strain rates of (0.5–1) × 10−2 s−1. A constitutive model based on Arrhenius and Beckofen equations was used to describe and predict the superplastic flow behavior of the alloy studied. Model complex-shaped parts were processed by superplastic forming at two strain rates. The proposed strain rate of 1 × 10−2 s−1 provided a low thickness variation and a high quality of the experimental parts. The residual cavitation after superplastic forming was also large at the low strain rate of 2 × 10−3 s−1 and significantly smaller at 1 × 10−2 s−1. Coarse Al9FeNi particles did not stimulate the cavitation process and were effective to provide the superplasticity of alloys studied at high strain rates, whereas cavities were predominately observed near coarse Mg2Si particles, which act as nucleation places for cavities during superplastic deformation and forming.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3