High-Order Sliding Mode Control for Three-Joint Rigid Manipulators Based on an Improved Particle Swarm Optimization Neural Network

Author:

Zhang Jin,Meng WenjunORCID,Yin Yufeng,Li Zhengnan,Ma Lidong,Liang Weiqiang

Abstract

This paper presents a control method for the problem of trajectory jitter and poor tracking performance of the end of a three-joint rigid manipulator. The control is based on a high-order particle swarm optimization algorithm with an improved sliding mode control neural network. Although the sliding mode variable structure control has a certain degree of robustness, because of its own switching characteristics, chattering can occur in the later stage of the trajectory tracking of the manipulator end. Hence, on the basis of the high-order sliding mode control, the homogeneous continuous control law and super-twisting adaptive algorithm were added to further improve the robustness of the system. The radial basis function neural network was used to compensate the errors in the modeling process, and an adaptive law was designed to update the weights of the middle layer of the neural network. Furthermore, an improved particle swarm optimization algorithm was established and applied to optimize the parameters of the neural network, which improved the trajectory tracking of the manipulator end. Finally, MATLAB simulation results indicated the validity and superiority of the proposed control method compared with other sliding mode control algorithms.

Funder

National Key R&D Program of China for Robot Project

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3