Abstract
The main purpose of this study is to develop a variational formulation for predicting structure behavior and accounting for damage mechanics in metallic materials. Mechanical and coupled thermomechanical models are used to predict failure in manufacturing processes. Ductile failure is accompanied by a significant amount of plastic deformation in metallic structural components. Finite element simulation of damage evolution in ductile solids is presented in this paper. Uncoupled models are implemented in a finite element model simulating deep drawing as well as cutting processes. Based on the Johnson–Cook model, the effect of deformation on the evolution of flow stress is described. The combined effect of strain, strain rate, and temperature on plasticity and damage behavior in cutting processes is considered. The accuracy of these models is verified when predicting ductile damage in forming and cutting processes.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献