A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions

Author:

Lin J.1,Liu Y.1,Dean T. A.1

Affiliation:

1. Mechanical and Manufacturing Engineering, School of Engineering, The University of Birmingham, Birmingham, B15 2TT, UK

Abstract

The development of microdamage under the deformation conditions of high temperature creep, cold metal forming, superplastic forming, and hot metal forming has been reviewed and discussed, and typical constitutive equations developed to model the individual damage mechanisms are summarized. Based on the microstructural analysis of the key damage features for metallic materials under a wide range of deformation conditions, a set of schematic diagrams is designed to illustrate the major types of damage mechanisms. This helps researchers and engineers to understand the major cause of failure of materials under different deformation conditions and to select simple and appropriate mechanism-based damage equations to predict the damage evolution. Further discussions are carried out on the dominant damage mechanisms in hot metal forming conditions and it is concluded that the dominant damage mechanism can be ‘grain boundary (creep-type) damage’ or ‘plasticity-induced (ductile) damage’ depending on the material microstructure and deformation rate. In the case of grain boundary damage in hot forming, the shape of microdefects is different from those in high temperature creep and superplastic forming although all of those result in intergranular failure of materials. Furthermore, damage calibration techniques for different conditions of plastic deformation are summarized and discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 135 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3