Application of Neural Network and Dual-Energy Radiation-Based Detection Techniques to Measure Scale Layer Thickness in Oil Pipelines Containing a Stratified Regime of Three-Phase Flow

Author:

Mayet Abdulilah MohammadORCID,Chen Tzu-ChiaORCID,Ahmad Ijaz,Tag Eldin ElsayedORCID,Al-Qahtani Ali Awadh,Narozhnyy Igor M.,Guerrero John William GrimaldoORCID,Alhashim Hala H.

Abstract

Over time, oil pipes are scaled, which causes problems such as a reduction in the effective diameter of the oil pipe, an efficiency reduction, waste of energy, etc. Determining the exact value of the scale inside the pipe is very important in order to take timely action and to prevent the mentioned problems. One accurate detection methodology is the use of non-invasive systems based on gamma-ray attenuation. For this purpose, in this research, a scale thickness detection system consisting of a test pipe, a dual-energy gamma source (241Am and 133Ba radioisotopes), and two sodium iodide detectors were simulated using the Monte Carlo N Particle (MCNP) code. In the test pipe, three-phase flow consisting of water, gas, and oil was simulated in a stratified flow regime in volume percentages in the range from 10% to 80%. In addition, a scale with different thicknesses from 0 to 3 cm was placed inside the pipe, and gamma rays were irradiated onto the pipe; on the other side of the pipe, the photon intensity was recorded by the detectors. A total of 252 simulations were performed. From the signal received by the detectors, four characteristics were extracted, named the Photopeaks of 241Am and 133Ba for the first and second detectors. After training many different Multi-Layer Perceptron(MLP) neural networks with various architectures, it was found that a structure with two hidden layers could predict the connection between the input, extracted features, and the output, scale thickness, with a Root Mean Square Error (RMSE) of less than 0.06. This low error value guarantees the effectiveness of the proposed method and the usefulness of this method for the oil and petrochemical industry.

Funder

King Khalid University

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3