Using Particle Swarm Optimization and Artificial Intelligence to Select the Appropriate Characteristics to Determine Volume Fraction in Two-Phase Flows

Author:

Iliyasu Abdullah M.12ORCID,Benselama Abdallah S.1,Bagaudinovna Dakhkilgova Kamila3,Roshani Gholam Hossein4ORCID,S. Salama Ahmed5ORCID

Affiliation:

1. Electrical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. School of Computing, Tokyo Institute of Technology, Yokohama 226-8502, Japan

3. Department of Programming and Infocommunication Technologies, Institute of Mathematics, Physics and Information Technology, Kadyrov Chechen State University, 32 Sheripova Str., 364907 Grozny, Russia

4. Electrical Engineering Department, Kermanshah University of Technology, Kermanshah 6715685420, Iran

5. Faculty of Engineering and Technology, Future University in Egypt, New Cairo 11835, Egypt

Abstract

Global demand for fossil fuels has increased the importance of flow measurement in the oil sector. As a result, a new submarket in the flowmeter business has opened up. To improve the accuracy of gamma-based two-phase flowmeters, this study employs time-feature extraction methods, a particle swarm optimization (PSO) based feature selection system, and an artificial neural network. This article proposes a fraction detection system that uses a 137Cs gamma source, two NaI detectors for recording the photons, and a Pyrex-glass pipe between them. The Monte Carlo N Particle method was used to simulate the geometry mentioned above. Thirteen time-domain features were extracted from the raw data recorded by both detectors. Optimal characteristics were identified with the help of PSO. This procedure resulted in the identification of eight efficient features. The input-output relationship was approximated using a Multi-Layer Perceptron (MLP) neural network. The innovation of the present research is in the use of a feature extraction technique based on the PSO algorithm to determine volume percentages, with results such as: (1) introducing eight appropriate time characteristics in determining volume percentages; (2) achieving an accuracy of less than 0.37 in root mean square error (RMSE) and 0.14 in mean square error (MSE) while predicting the volume fraction of components in a gas-liquid two-phase flow; and (3) reducing the calculation load. Utilizing optimization-based feature selection techniques has allowed for the selection of meaningful inputs, which has decreased the volume of computations while boosting the precision of the presented system.

Funder

the Deputyship for Research and Innovation of the Saudi Ministry of Education

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3