Predicting Scale Thickness in Oil Pipelines Using Frequency Characteristics and an Artificial Neural Network in a Stratified Flow Regime

Author:

Chen Tzu-ChiaORCID,Iliyasu Abdullah M.ORCID,Hanus RobertORCID,Salama Ahmed S.,Hirota KaoruORCID

Abstract

One of the main problems in oil fields is the deposition of scale inside oil pipelines, which causes problems such as the reduction of the internal diameter of oil pipes, the need for more energy to transport oil products, and the waste of energy. For this purpose, the use of an accurate and reliable system for determining the amount of scale inside the pipes has always been one of the needs of the oil industry. In this research, a non-invasive, accurate, and reliable system is presented, which works based on the attenuation of gamma rays. A dual-energy gamma source (241Am and 133Ba radioisotopes), a sodium iodide detector, and a steel pipe are used in the structure of the detection system. The configuration of the detection structure is such that the dual-energy source and the detector are directly opposite each other and on both sides of the steel pipe. In the steel pipe, a stratified flow regime consisting of gas, water, and oil in different volume percentages was simulated using Monte Carlo N Particle (MCNP) code. Seven scale thicknesses between 0 and 3 cm were simulated inside the tube. After the end of the simulation process, the received signals were labeled and transferred to the frequency domain usage of fast Fourier transform (FFT). Frequency domain signals were processed, and four frequency characteristics were extracted from them. The multilayer perceptron (MLP) neural network was used to obtain the relationship between the extracted frequency characteristics and the scale thickness. Frequency characteristics were defined as inputs and scale thickness in cm as the output of the neural network. The prediction of scale thickness with an RMSE of 0.13 and the use of only one detector in the structure of the detection system are among the advantages of this research.

Funder

Ministry of Science and Higher Education

Deputyship for Research and Innovation of the Saudi Ministry of Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3