Poly[(N-acryloyl glycinamide)-co-(N-acryloyl l-alaninamide)] and Their Ability to Form Thermo-Responsive Hydrogels for Sustained Drug Delivery

Author:

Boustta Mahfoud,Vert MichelORCID

Abstract

In the presence of water, poly(N-acryloyl glycinamide) homopolymers form highly swollen hydrogels that undergo fast and reversible gel↔sol transitions on heating. According to the literature, the transition temperature depends on concentration and average molecular weight, and in the case of copolymers, composition and hydrophilic/hydrophobic character. In this article, we wish to introduce new copolymers made by free radical polymerization of mixtures of N-acryloyl glycinamide and of its analog optically active N-acryloyl l-alaninamide in various proportions. The N-acryloyl l-alaninamide monomer was selected in attempts to introduce hydrophobicity and chirality in addition to thermo-responsiveness of the Upper Critical Solubilization Temperature-type. The characterization of the resulting copolymers included solubility in solvents, dynamic viscosity in solution, Fourrier Transform Infrared, Nuclear Magnetic Resonance, and Circular Dichroism spectra. Gel→sol transition temperatures were determined in phosphate buffer (pH = 7.4, isotonic to 320 mOsm/dm3). The release characteristics of hydrophilic Methylene Blue and hydrophobic Risperidone entrapped in poly(N-acryloyl glycinamide) and in two copolymers containing 50 and 75% of alanine-based units, respectively, were compared. It was found that increasing the content in N-acryloyl-alaninamide-based units increased the gel→sol transition temperature, decreased the gel consistency, and increased the release rate of Risperidone, but not that of Methylene Blue, with respect to homo poly(N-acryloyl glycinamide). The increase observed in the case of Risperidone appeared to be related to the hydrophobicity generated by alanine residues.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3