Synthesis, rheology, cytotoxicity and antibacterial studies of N-acrolylglycine-acrylamide copolymer soft nano hydrogel

Author:

Yamala Anilkumar1ORCID,Kurba Jai Shree1,Kumar D. Sanjeev2,Kanaparthi Ravi Kumar3,Madikonda Ashok K.4

Affiliation:

1. School of Engineering Science and Technology , University of Hyderabad , Prof. CR Rao Road, 500046 , Hyderabad , Telangana , India

2. Government College (A) , Rajahmundry , 533105 , Andhrapradesh , India

3. Department of Chemistry , Central University of Kerala , Tejaswini Hills, Periye PO , Kasaragod , 671 320 , Kerala , India

4. Department of Biochemistry and Molecular Biology , Central University of Kerala , Tejaswini Hills, Periye PO , Kasaragod , 671 320 , Kerala , India

Abstract

Abstract Hydrogels possess excellent biological properties that make them ideal for biomedical applications. They are compatible with living cells and tissues because they can swell in the presence of water. In this study, we investigated the stability and biocompatibility of hydrogels. We synthesized and characterized N-acryl glycine (NAG) monomer and then synthesized its copolymer using the miniemulsion-polymerization technique, a soft-hydrogel method. To confirm the morphological properties of the dried hydrogel particles, we used the field emission scanning electron microscopy (FESEM) technique. We also investigated the rheological properties of the hydrogels for different concentrations to evaluate their mechanical strength and gel-like properties. Our findings indicated that the 10 % gel had superior strength and yield strain at all examined temperatures (30 °C, 37 °C, and 40 °C) compared to other concentrated gels. We systematically evaluated the biocompatibility of the hydrogel using three different cell lines: HEK 293T, RAW 264.7, and HeLa. Our cell line studies demonstrated that hydrogels are viable when exposed to a concentration of 0.5 mg/mL. Moreover, cell proliferation was observed at concentrations below 0.25 mg/mL. The MTT assay and rheology results suggest that hydrogel characteristics are more suitable for various biomedical applications, such as drug delivery and tissue engineering.

Funder

Central University of Kerala

University of Hyderabad

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3