Extreme Water Uptake of Hygroscopic Hydrogels through Maximized Swelling‐Induced Salt Loading

Author:

Graeber Gustav12ORCID,Díaz‐Marín Carlos D.1ORCID,Gaugler Leon C.1,Zhong Yang1ORCID,El Fil Bachir1ORCID,Liu Xinyue1,Wang Evelyn N.1ORCID

Affiliation:

1. Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA

2. Department of Chemistry Humboldt‐Universität zu Berlin 12489 Berlin Germany

Abstract

AbstractHygroscopic hydrogels are emerging as scalable and low‐cost sorbents for atmospheric water harvesting, dehumidification, passive cooling, and thermal energy storage. However, devices using these materials still exhibit insufficient performance, partly due to the limited water vapor uptake of the hydrogels. Here, the swelling dynamics of hydrogels in aqueous lithiumchloride solutions, the implications on hydrogel salt loading, and the resulting vapor uptake of the synthesized hydrogel–salt composites are characterized. By tuning the salt concentration of the swelling solutions and the cross‐linking properties of the gels, hygroscopic hydrogels with extremely high salt loadings are synthesized, which enable unprecedented water uptakes of 1.79 and 3.86 gg−1 at relative humidity (RH) of 30% and 70%, respectively. At 30% RH, this exceeds previously reported water uptakes of metal–organic frameworks by over 100% and of hydrogels by 15%, bringing the uptake within 93% of the fundamental limit of hygroscopic salts while avoiding leakage problems common in salt solutions. By modeling the salt‐vapor equilibria, the maximum leakage‐free RH is elucidated as a function of hydrogel uptake and swelling ratio. These insights guide the design of hydrogels with exceptional hygroscopicity that enable sorption‐based devices to tackle water scarcity and the global energy crisis.

Funder

Office of Energy Efficiency and Renewable Energy

National Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3