Abstract
An effective path-planning algorithm in three-dimensional (3D) environments based on a geometric approach for redundant/hyper-redundant manipulators are presented in this paper. The method works within confined spaces cluttered with obstacles in real-time. Using potential fields in 3D, a middle path is generated for point robots. Beams are generated tangent to the path points, which constructs a basis for preparing a collision-free path for the manipulator. Then, employing a simply control strategy without interaction between the links, the motion planning is achieved by advancing the end-effector of the manipulator through narrow terrains while keeping each link’s joints on this path until the end-effector reaches the goal. The method is simple, robust and significantly increases maneuvering ability of the manipulator in 3D environments compared to existing methods as illustrated with examples.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献