Real-Time Ocean Current Compensation for AUV Trajectory Tracking Control Using a Meta-Learning and Self-Adaptation Hybrid Approach

Author:

Zhang Yiqiang1,Che Jiaxing2,Hu Yijun3,Cui Jiankuo1,Cui Junhong12

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun 130012, China

2. Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China (UESTC), Shenzhen 518110, China

3. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China

Abstract

Autonomous underwater vehicles (AUVs) may deviate from their predetermined trajectory in underwater currents due to the complex effects of hydrodynamics on their maneuverability. Model-based control methods are commonly employed to address this problem, but they suffer from issues related to the time-variability of parameters and the inaccuracy of mathematical models. To improve these, a meta-learning and self-adaptation hybrid approach is proposed in this paper to enable an underwater robot to adapt to ocean currents. Instead of using a traditional complex mathematical model, a deep neural network (DNN) serving as the basis function is trained to learn a high-order hydrodynamic model offline; then, a set of linear coefficients is adjusted dynamically by an adaptive law online. By conjoining these two strategies for real-time thrust compensation, the proposed method leverages the potent representational capacity of DNN along with the rapid response of adaptive control. This combination achieves a significant enhancement in tracking performance compared to alternative controllers, as observed in simulations. These findings substantiate that the AUV can adeptly adapt to new speeds of ocean currents.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3