Hot Embossing to Fabricate Parylene-Based Microstructures and Its Impact on the Material Properties

Author:

Glauche Florian12ORCID,Selbmann Franz12ORCID,Guttmann Markus34,Schneider Marc34,Hengsbach Stefan34,Joseph Yvonne2ORCID,Kuhn Harald15

Affiliation:

1. Fraunhofer Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126 Chemnitz, Germany

2. Institute of Nanoscale and Biobased Materials (INBM), Technische Universität Bergakademie Freiberg, Gustav-Zeuner-Straße 3, 09599 Freiberg, Germany

3. Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

4. Karlsruhe Nano and Micro Facility (KNMFi), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

5. Center for Microtechnologies (ZfM), Technische Universität Chemnitz, Reichenhainer Straße 70, 09126 Chemnitz, Germany

Abstract

This study aims to establish and optimize a process for the fabrication of 3D microstructures of the biocompatible polymer Parylene C using hot embossing techniques. The different process parameters such as embossing temperature, embossing force, demolding temperature and speed, and the usage of a release agent were optimized, utilizing adhesive micropillars as a use case. To enhance compatibility with conventional semiconductor fabrication techniques, hot embossing of Parylene C was adapted from conventional stainless steel substrates to silicon chip platforms. Furthermore, this adaptation included an investigation of the effects of the hot embossing process on metal layers embedded in the Parylene C, ensuring compatibility with the ultra-thin Parylene printed circuit board (PCB) demonstrated previously. To evaluate the produced microstructures, a combination of characterization methods was employed, including light microscopy (LM) and scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). These methods provided comprehensive insights into the morphological, chemical, and structural properties of the embossed Parylene C. Considering the improved results compared to existing patterning techniques for Parylene C like plasma etching or laser ablation, the developed hot embossing approach yields a superior structural integrity, characterized by increased feature resolution and enhanced sidewall smoothness. These advancements render the method particularly suitable for diverse applications, including but not limited to, sensor optical components, adhesive interfaces for medical wearables, and microfluidic systems.

Funder

European Social Fund ESF

Fraunhofer Society

Karlsruhe Nano Micro Facility within the Karlsruhe Institute of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3