An Improved Particle Swarm Optimization with Chaotic Inertia Weight and Acceleration Coefficients for Optimal Extraction of PV Models Parameters

Author:

Kiani Arooj Tariq,Nadeem Muhammad FaisalORCID,Ahmed Ali,Khan Irfan A.ORCID,Alkhammash Hend I.,Sajjad Intisar AliORCID,Hussain Babar

Abstract

The efficiency of PV systems can be improved by accurate estimation of PV parameters. Parameter estimation of PV cells and modules is a challenging task as it requires accurate operation of PV cells and modules followed by an optimization tool that estimates their associated parameters. Mostly, population-based optimization tools are utilized for PV parameter estimation problems due to their computational intelligent behavior. However, most of them suffer from premature convergence problems, high computational burden, and often fall into local optimum solution. To mitigate these limitations, this paper presents an improved variant of particle swarm optimization (PSO) aiming to reduce shortcomings offered by conventional PSO for estimation of PV parameters. PSO is improved by introducing two strategies to control inertia weight and acceleration coefficients. At first, a sine chaotic inertia weight strategy is employed to attain an appropriate balance between local and global search. Afterward, a tangent chaotic strategy is utilized to guide acceleration coefficients in search of an optimal solution. The proposed algorithm is utilized to estimate the parameters of the PWP201 PV module, RTC France solar cell, and a JKM330P-72 PV module-based practical system. The obtained results indicate that the proposed technique avoids premature convergence and local optima stagnation of conventional PSO. Moreover, a comparison of obtained results with techniques available in the literature proves that the proposed methodology is an efficient, effective, and optimal tool to estimate PV modules and cells’ parameters.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3