Example of Using Particle Swarm Optimization Algorithm with Nelder–Mead Method for Flow Improvement in Axial Last Stage of Gas–Steam Turbine

Author:

Ziółkowski Paweł1ORCID,Witanowski Łukasz2ORCID,Głuch Stanisław1ORCID,Klonowicz Piotr2,Feidt Michel3ORCID,Koulali Aimad1ORCID

Affiliation:

1. Institute of Energy, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, 80-233 Gdańsk, Poland

2. Institute of Fluid-Flow Machinery Polish Academy of Sciences, 80-231 Gdańsk, Poland

3. Laboratory of Energetics & Theoretical & Applied Mechanics (LEMTA), CNRS, Lorraine University, F-54000 Nancy, France

Abstract

This article focuses principally on the comparison baseline and the optimized flow efficiency of the final stage of an axial turbine operating on a gas–steam mixture by applying a hybrid Nelder–Mead and the particle swarm optimization method. Optimization algorithms are combined with CFD calculations to determine the flowpaths and thermodynamic parameters. The working fluid in this study is a mixture of steam and gas produced in a wet combustion chamber, therefore the new turbine type is currently undergoing theoretical research. The purpose of this work is to redesign and examine the last stage of the gas–steam turbine’s flow characteristics. Among the optimized variables, there are parameters characterizing the shape of the endwall contours within the rotor domain. The values of the maximized objective function, which is the isentropic efficiency of the turbine stage, are found from the 3D RANS computation of the flowpath geometry changing during the improvement scheme. The optimization process allows the stage efficiency to be increased by almost 4 percentage points. To achieve high-quality results, a mesh of over 20 million elements is used, where the percentage error in efficiency between the previous and current mesh sizes drops below 0.05%.

Funder

Gdańsk University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3