Ball Tracking and Trajectory Prediction for Table-Tennis Robots

Author:

Lin Hsien-IORCID,Yu Zhangguo,Huang Yi-Chen

Abstract

Sports robots have become a popular research topic in recent years. For table-tennis robots, ball tracking and trajectory prediction are the most important technologies. Several methods were developed in previous research efforts, and they can be divided into two categories: physical models and machine learning. The former use algorithms that consider gravity, air resistance, the Magnus effect, and elastic collision. However, estimating these external forces require high sampling frequencies that can only be achieved with high-efficiency imaging equipment. This study thus employed machine learning to learn the flight trajectories of ping-pong balls, which consist of two parabolic trajectories: one beginning at the serving point and ending at the landing point on the table, and the other beginning at the landing point and ending at the striking point of the robot. We established two artificial neural networks to learn these two trajectories. We conducted a simulation experiment using 200 real-world trajectories as training data. The mean errors of the proposed dual-network method and a single-network model were 39.6 mm and 42.9 mm, respectively. The results indicate that the prediction performance of the proposed dual-network method is better than that of the single-network approach. We also used the physical model to generate 330 trajectories for training and the simulation test results show that the trained model achieved a success rate of 97% out of 30 attempts, which was higher than the success rate of 70% obtained by the physical model. A physical experiment presented a mean error and standard deviation of 36.6 mm and 18.8 mm, respectively. The results also show that even without the time stamps, the proposed method maintains its prediction performance with the additional advantages of 15% fewer parameters in the overall network and 54% shorter training time.

Funder

National Taipei University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3