Multi-camera tracking of mechanically thrown objects for automated in-plant logistics by cognitive robots in Industry 4.0

Author:

Qadeer NaumanORCID,Shah Jamal HussainORCID,Sharif MuhammadORCID,Dahan FadlORCID,Khokhar Fahad AhmedORCID,Ghazal RubinaORCID

Abstract

AbstractEmploying cognitive robots, capable of throwing and catching, is a strategy aimed at expediting the logistics process within Industry 4.0’s smart manufacturing plants, specifically for the transportation of small-sized manufacturing parts. Since the flight of mechanically thrown objects is inherently unpredictable, it is crucial for the catching robot to observe the initial trajectory with utmost precision and intelligently forecast the final catching position to ensure accurate real-time grasping. This study utilizes multi-camera tracking to monitor mechanically thrown objects. It involves the creation of a 3D simulation that facilitates controlled mechanical throwing of objects within the internal logistics environment of Industry 4.0. The developed simulation empowers users to define the attributes of the thrown object and capture its trajectory using a simulated pinhole camera, which can be positioned at any desired location and orientation within the in-plant logistics environment of flexible manufacturing systems. The simulation facilitated ample experimentation to be conducted for determining the optimal camera positions for accurately observing the 3D interception positions of a flying object based on its apparent size on the camera’s sensor plane. Subsequently, a variety of calibrated multi-camera setups were experimented while placing cameras at identified optimal positions. Based on the obtained results, the most effective multi-camera configuration setup is derived. Finally, a training dataset is prepared for 3000 simulated throwing experiments where the initial part of the trajectory consists of observed interception positions, through derived best multi-camera setup, and the final part consists of actual positions. The encoder–decoder Bi-LSTM deep neural network is proposed and trained on this dataset. The trained model outperformed the current state-of-the-art by accurately predicting the final 3D catching point, achieving a mean average error of 5 mm and a root-mean-square error of 7 mm in 200 real-world test experiments.

Funder

Università degli Studi di Firenze

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3