Parameter Estimation and Assessment of Infiltration Models for Madjez Ressoul Catchment, Algeria

Author:

Dahak Asma,Boutaghane HamoudaORCID,Merabtene TarekORCID

Abstract

Evaluation and modeling of soil water infiltration are essential to all aspects of water resources management and the design of hydraulic structures. Nonetheless, research focused on experimental studies of infiltration rates in arid and semi-arid regions under unknown boundary conditions remains minimal. This paper investigates the characteristics of the spatial variability of infiltration over a semi-arid rural basin of Algeria. The experiments were conducted using a portable double-ring infiltrometer filled at an equal volume of approximately 100 L of water for each of the 25 catchment locations. Soil moisture contents at the proximity of each test location were evaluated in the laboratory as per the standard NF P94–050 protocol. The experimental results are used to produce the catchment infiltration curves using three statistically fitted infiltration models, namely Horton, Kostiakov, and Philip models. The reliability of the models was assessed using four performance criteria. The statistical regressions of the fitted models suggest that the Horton model is the most suitable to assess the infiltration rate over the catchment with mean coefficients of Nash = 0.963, CC = 0.985, RMSE = 1.839 (cm/h), and Bias = 0.241. The superiority of the Horton model suggests that the initial and final infiltration rates, primarily affected by soil type, initial soil moistures, and land cover, are important predictors of the modeling process over the Madjez Ressoul catchment. The results also infer that the applicability of other models to the different types of undeveloped soils in the study area requires advanced field investigations. This finding will support the understanding of the hydrologic processes over semi-arid basins, especially in advising crop irrigation schemes and methods and managing the recurring flood and drought over the country.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3