Experimental and Modeling Evaluation of Impacts of Different Tillage Practices on Fitting Parameters of Kostiakov’s Cumulative Infiltration Empirical Equation

Author:

Abdel-Sattar Mahmoud1ORCID,Al-Obeed Rashid S.1,Al-Hamed Saad A.2,Aboukarima Abdulwahed M.2ORCID

Affiliation:

1. Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

2. Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia

Abstract

The evaluation and modeling of the water infiltration rate into the soil are important to all aspects of water resources management and the design of irrigation systems for agricultural purposes. However, research focused on experimental studies of infiltration rates in clay soils under different tillage practices remains minimal. Therefore, an empirical prediction model for cumulative water infiltration needs to be created to estimate water depth under different tillage practices. Thus, the present research investigated the impacts of different tillage practices, including plow type (three tillage systems: moldboard, disk, and rotary plows), tillage depth (100 and 200 mm) and four soil compactions levels (0, 1, 3, and 5 tractor wheel passes), on cumulative infiltration behavior in a clay soil under a randomized complete design with three replications. Double-ring infiltration experiments were conducted to collect infiltration data. The research was conducted in three different stages. The first stage was performed through a field test to obtain infiltration data, the second stage involved using a Kostiakov empirical equation (Z = q × tb) for cumulative infiltration to acquire the fitting parameters of “q” and “b”, and in the last stage, we predicted the fitting parameters of “q” and “b” based on soil mean weight diameter, tillage depth, and four soil compaction levels by applying regression data mining approaches in Weka 3.8 software. The results show that the effects of relevant factors on the cumulative water infiltration depth of the soil could be statistically significant (p < 0.05). The Kostiakov model, with an average coefficient of determination of 0.939, had a good fitting effect on the cumulative water infiltration depth process of the investigated soil. The average, lowest, and maximum values of the “q” parameter were 2.7073, 2.2724, and 3.1277 mm/minb, respectively, while for the “b” parameter, they were 0.5523, 0.5424, and 0.5647, respectively. Furthermore, the evaluation of several regression data mining approaches determined that the KStar (K*) data mining approach, with a root mean square error of 0.0228 mm/minb, a mean absolute error of 0.0179 mm/minb, and a correlation coefficient of 0.997, was the most accurate method for fitting parameter “q” using the testing dataset. The most accurate method for fitting the parameter “b” estimation was determined to be the Multilayer Perceptron method, with a root mean square error of 0.0026, a mean absolute error of 0.0013, and a correlation coefficient of 0.962, using the testing dataset. Therefore, this research, which consisted of in situ field observation experiments and infiltration modeling of the infiltration process in a clay soil, provides an essential theoretical basis for improving models of the rate of cumulative infiltration. Moreover, the proposed methodology could be employed for simulation of the fitting parameters “q” and “b” for soil water cumulative infiltration processes, not only for irrigation management purposes under regular crop production conditions, but also for the selection of the most suitable tillage practices to modify the soil during the agriculture season to conserve water and prevent yield declines. The results support the understanding of the infiltration processes in a clay soil and demonstrate that tillage practices could reduce the water infiltration rate into the soil.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3