Assessing Variability of Infiltration Characteristics and Reliability of Infiltration Models in a Tropical Sub-humid Region of India

Author:

Mahapatra SmaranikaORCID,Jha Madan K.,Biswal Sabinaya,Senapati Debasis

Abstract

AbstractInfiltration process, which plays a paramount role in irrigation and drainage systems design, groundwater recharge and contamination evaluation, flood and drought management etc. is often controlled by several factors, among which land use/land cover (LULC) and soil physical properties are the prime factors. These factors lead to significant spatial variability of infiltration process, which poses a serious challenge for hydrologists and water managers. However, studies analyzing spatial variability and influence of both LULC and soil physical properties are scarce. To this end, grid-based infiltration experiments were carried out in a tropical sub-humid region of India to investigate spatial variability of infiltration characteristics, saturated hydraulic conductivity (Ksat) as well as to evaluate reliability of seven infiltration models in predicting infiltration behaviour and estimating Ksat. Additionally, uncertainty analysis was performed to quantify uncertainties associated with estimated Ksat for different LULC and soils. Results indicated that quasi-steady infiltration rate over the study area vary considerably with a majority of the area falling under ‘low’ and ‘medium’ infiltration categories. The infiltration process is greatly influenced by macro-pores and relatively low-permeable layers present at varying depths, typical features of lateritic vadose zones in tropical sub-humid regions, rather than its sole dependence on texture and LULC. Further, the Brutsaert model estimates Ksat with the highest accuracy and least uncertainty followed by Swartzendruber and Horton models. Except the Brutsaert model, other models are sensitive to a particular LULC. Overall, it is inferred that the Brutsaert and Swartzendruber models are robust and more reliable in predicting infiltration behavior and Ksat for the area. Findings of this study including quantification of spatial variability of important soil properties are useful for understanding detailed hydrological processes in the region and thereby, ensuring better planning and management of recurring floods and drought problems of the region.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference60 articles.

1. WWAP. The United Nations World Water Development Report 20144: Water and Energy; Facts and Figures. United Nations Educational, Scientific and Cultural Organization (UNESCO), Paris, pp. 1–7 (2014).

2. Howell, T. A. Enhancing water use efficiency in irrigated agriculture. Agronomy Journal 93(2), 281–289 (2001).

3. Bell, J. M., Schwartz, R., McInnes, K. J., Howell, T. & Morgan, C. L. Deficit irrigation effects on yield and yield components of grain sorghum. Agricultural Water Management 203, 289–296 (2018).

4. Hillel, D. Environmental Soil Physics. Academic Press, California, USA, 771 pp (1998).

5. Pereira, L. S., Oweis, T. & Zairi, A. Irrigation management under water scarcity. Agricultural Water Management 57(3), 175–206 (2002).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3