Dynamics and Drivers of Water Clarity Derived from Landsat and In-Situ Measurement Data in Hulun Lake from 2010 to 2020

Author:

Zhao ChuanwuORCID,Zhang Yuhuan,Guo Wei,Fahad Baqa MuhammadORCID

Abstract

Water clarity (Secchi disk depth, SDD), as a proxy of water transparency, provides important information on the light availability to the lake ecosystem, making it one of the key indicators for evaluating the water ecological environment, particularly in nutrient-rich inland lakes. Hulun Lake, the fifth largest lake in China, has faced severe water quality challenges in the past few decades, e.g., high levels of phosphorus and nitrogen, leading to lake eutrophication. However, under such a serious context, the temporal and spatial dynamics of SDD in Hulun Lake are still unclear. In this paper, we obtained the best model input parameters by using stepwise linear regression models to test field measurements against remote sensing band information, and then developed the SDD satellite algorithm suitable for Hulun Lake by comparing six models (i.e., linear, quadratic, cubic, exponential, power, and logarithmic). The results showed that (1) B3/(B1 + B4) [red/(blue-near-infrared)] was the most sensitive parameter for transparency (R = 0.84) and the exponential model was the most suitable transparency inversion model for Hulun Lake (RMSE = 0.055 m, MAE = 0.003 m), (2) The annual mean SDD of Hulun Lake was higher in summer than in autumn, the summer SDD decreased from 2010 (0.23 m) to 2020 (0.17 m), and the autumn SDD increased from 2010 (0.06 m) to 2020 (0.16 m). The SDD in the littoral zones of Hulun Lake was less than that in the central part; (3) meteorological conditions (i.e., precipitation and wind speed) were highly correlated with the variation of SDD. Cropland expansion was the possible reason for the low SDD at the entrance of Hulun Lake flow. The findings of this study have important implications for the development and implementation of ecological protection and restoration strategies in the Hulun Lake basin.

Funder

Major Projects of High Resolution Earth Observation Systems of National Science and Technology

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3