Lake Surface Temperature Predictions under Different Climate Scenarios with Machine Learning Methods: A Case Study of Qinghai Lake and Hulun Lake, China

Author:

Li Zhenghao123,Zhang Zhijie4,Xiong Shengqing5,Zhang Wanchang12,Li Rui123

Affiliation:

1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

4. Department of Environment and Society, Quinney College of Natural Resources, Utah State University, Logan, UT 84322, USA

5. Natural Resources Aero-Geophysical and Remote Sensing Center of China Geological Survey, Beijing 100083, China

Abstract

Accurate prediction of lake surface water temperature (LSWT) is essential for understanding the impacts of climate change on aquatic ecosystems and for guiding environmental management strategies. Predictions of LSWT for two prominent lakes in northern China, Qinghai Lake and Hulun Lake, under various future climate scenarios, were conducted in the present study. Utilizing historical hydrometeorological data and MODIS satellite observations (MOD11A2), we employed three advanced machine learning models—Random Forest (RF), XGBoost, and Multilayer Perceptron Neural Network (MLPNN)—to predict monthly average LSWT across three future climate scenarios (ssp119, ssp245, ssp585) from CMIP6 projections. Through the comparison of training and validation results of the three models across both lake regions, the RF model demonstrated the highest accuracy, with a mean MAE of 0.348 °C and an RMSE of 0.611 °C, making it the most optimal and suitable model for this purpose. With this model, the predicted LSWT for both lakes reveals a significant warming trend in the future, particularly under the high-emission scenario (ssp585). The rate of increase is most pronounced under ssp585, with Hulun Lake showing a rise of 0.55 °C per decade (R2 = 0.72) and Qinghai Lake 0.32 °C per decade (R2 = 0.85), surpassing trends observed under ssp119 and ssp245. These results underscore the vulnerability of lake ecosystems to future climate change and provide essential insights for proactive climate adaptation and environmental management.

Funder

National Key R & D Program of China

Major Science and Technology Projects

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3