Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger

Author:

Ham Jeonggyun,Lee Gonghee,Oh Dong-wookORCID,Cho HonghyunORCID

Abstract

In this study, computational fluid dynamics (CFD) analysis was performed to investigate the cause of the thermal stratification in the channel and the temperature non-uniformity of the plate heat exchanger. The flow velocity maldistribution of the channel and the merging parts caused temperature non-uniformity in the channel width direction. The non-uniformity of flow velocity and temperature in the channel is shown in Section 1 > Section 3 > Section 2 from the heat exchanger. The non-uniform temperature distribution in the channel caused channel stratification and non-uniform outlet temperature. Stratification occurred at the channel near the merging due to the flow rate non-uniformity in the channel. In particular, as the mass flow rate increased from 0.03 to 0.12 kg/s and the effectiveness increased from 0.436 to 0.615, the cold-side stratified volume decreased from 4.06 to 3.7 cm3, and the temperature difference between the stratified area and the outlet decreased from 1.21 K to 0.61 K. The increase in mass flow and the decrease in temperature difference between the cold and hot sides alleviated the non-uniformity of the outlet temperature due to the increase in effectiveness. Besides, as the inlet temperature difference between the cold and the hot side increases, the temperature non-uniformity at the outlet port is poor due to the increase in the stratified region at the channel, and the distance to obtain a uniform temperature in the outlet pipe increases as the temperature at the hot side increases.

Funder

KOFONS

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3