Effect of partially wet-surface condition on the performance of fin-tube heat exchanger

Author:

Payambarpour Seyed Abdolkarim,Alhuyi Nazari Mohammad,Ahmadi Mohammad Hossein,Chamkha Ali J.

Abstract

Purpose This study aims to investigate heat and mass transfer in a one-row heat exchanger. The required equations are obtained based on two-dimensional model analysis in a cell of the heat exchanger. By using finite difference approach, the obtained equations are solved to determine distribution of temperature and the efficiency of the heat exchanger in the case of partially wet surface. In this research, Lewis Number as unity and water vapor saturation as parabolic are assumed. Obtained results show that increase in thermal conductivity fin leads to decreasing thermal resistance; therefore, temperature changes in radial from center to out of fin are reduced and efficiency of fin increases. Design/methodology/approach In this regard, fin material plays a significant role in fin efficiency. Changes in airflow also result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Moreover, the fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics, and it is a result of conjugate heat transfer mechanism, in which latent heat transfer in the fins with more wet surface has a significant role. Findings Thermal property and geometry of the fin under wet conditions play a more important role than the fin under dry conditions. Changes in airflow result in an efficiency increase by temperature and relative humidity, and efficiency is decreased by airflow velocity increase, and these changes are almost linear. Fins with more wet surface are more sensitive to changes in fin dimensions and air flow characteristics. Originality/value Effects of the temperature of water supply and mass flow rate were considered in the study. The results had good agreement with actual data.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference27 articles.

1. A heat and mass transfer model for thermal and hydraulic calculations of indirect evaporative cooler performance,1989

2. Fin performance with condensation from humid air: a numerical investigation;International Journal of Heat Fluid Flow,1989

3. Performance analysis of partially-wet fin assembly;Applied Thermal Engineering,1998

4. Modelling of indirect evaporative air coolers;International Journal of Heat and Mass Transfer,1993

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3