Super-Resolution Network for Remote Sensing Images via Preclassification and Deep–Shallow Features Fusion

Author:

Yue Xiuchao,Chen Xiaoxuan,Zhang Wanxu,Ma Hang,Wang LinORCID,Zhang Jiayang,Wang Mengwei,Jiang BoORCID

Abstract

A novel super-resolution (SR) method is proposed in this paper to reconstruct high-resolution (HR) remote sensing images. Different scenes of remote sensing images have great disparities in structural complexity. Nevertheless, most existing SR methods ignore these differences, which increases the difficulty to train an SR network. Therefore, we first propose a preclassification strategy and adopt different SR networks to process the remote sensing images with different structural complexity. Furthermore, the main edge of low-resolution images are extracted as the shallow features and fused with the deep features extracted by the network to solve the blurry edge problem in remote sensing images. Finally, an edge loss function and a cycle consistent loss function are added to guide the training process to keep the edge details and main structures in a reconstructed image. A large number of comparative experiments on two typical remote sensing images datasets (WHURS and AID) illustrate that our approach achieves better performance than state-of-the-art approaches in both quantitative indicators and visual qualities. The peak signal-to-noise ratio (PSNR) value and the structural similarity (SSIM) value using the proposed method are improved by 0.5353 dB and 0.0262, respectively, over the average values of five typical deep learning methods on the ×4 AID testing set. Our method obtains satisfactory reconstructed images for the subsequent applications based on HR remote sensing images.

Funder

Natural Science Basic Research Program of Shaanxi Province of China

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3