Pixel-Wise Attention Residual Network for Super-Resolution of Optical Remote Sensing Images

Author:

Chang Yali1ORCID,Chen Gang12,Chen Jifa1ORCID

Affiliation:

1. College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China

2. Hubei Key Laboratory of Marine Geological Resources, China University of Geosciences, Wuhan 430074, China

Abstract

The deep-learning-based image super-resolution opens a new direction for the remote sensing field to reconstruct further information and details from captured images. However, most current SR works try to improve the performance by increasing the complexity of the model, which results in significant computational costs and memory consumption. In this paper, we propose a lightweight model named pixel-wise attention residual network for optical remote sensor images, which can effectively solve the super-resolution task of multi-satellite images. The proposed method consists of three modules: the feature extraction module, feature fusion module, and feature mapping module. First, the feature extraction module is responsible for extracting the deep features from the input spatial bands with different spatial resolutions. Second, the feature fusion module with the pixel-wise attention mechanism generates weight coefficients for each pixel on the feature map and fully fuses the deep feature information. Third, the feature mapping module is aimed to maintain the fidelity of the spectrum by adding the fused residual feature map directly to the up-sampled low-resolution images. Compared with existing deep-learning-based methods, the major advantage of our method is that for the first time, the pixel-wise attention mechanism is incorporated in the task of super-resolution fusion of remote sensing images, which effectively improved the performance of the fusion network. The accuracy assessment results show that our method achieved superior performance of the root mean square error, signal-to–reconstruction ratio error, universal image quality index, and peak signal noise ratio compared to competing approaches. The improvements in the signal-to-reconstruction ratio error and peak signal noise ratio are significant, with a respective increase of 0.15 and 0.629 dB for Sentinel-2 data, and 0.196 and 1 dB for Landsat data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Maintaining original color when applying super-resolution to individual bands;Applications of Machine Learning 2023;2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3