Multi-Degradation Super-Resolution Reconstruction for Remote Sensing Images with Reconstruction Features-Guided Kernel Correction

Author:

Qin Yi12ORCID,Nie Haitao1,Wang Jiarong1,Liu Huiying12ORCID,Sun Jiaqi12,Zhu Ming1,Lu Jie3,Pan Qi3

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Satellite Information Intelligent Processing and Application Research Laboratory, Beijing 100192, China

Abstract

A variety of factors cause a reduction in remote sensing image resolution. Unlike super-resolution (SR) reconstruction methods with single degradation assumption, multi-degradation SR methods aim to learn the degradation kernel from low-resolution (LR) images and reconstruct high-resolution (HR) images more suitable for restoring the resolution of remote sensing images. However, existing multi-degradation SR methods only utilize the given LR images to learn the representation of the degradation kernel. The mismatches between the estimated degradation kernel and the real-world degradation kernel lead to a significant deterioration in performance of these methods. To address this issue, we design a reconstruction features-guided kernel correction SR network (RFKCNext) for multi-degradation SR reconstruction of remote sensing images. Specifically, the proposed network not only utilizes LR images to extract degradation kernel information but also employs features from SR images to correct the estimated degradation kernel, thereby enhancing the accuracy. RFKCNext utilizes the ConvNext Block (CNB) for global feature modeling. It employs CNB as fundamental units to construct the SR reconstruction subnetwork module (SRConvNext) and the reconstruction features-guided kernel correction network (RFGKCorrector). The SRConvNext reconstructs SR images based on the estimated degradation kernel. The RFGKCorrector corrects the estimated degradation kernel by reconstruction features from the generated SR images. The two networks iterate alternately, forming an end-to-end trainable network. More importantly, the SRConvNext utilizes the degradation kernel estimated by the RFGKCorrection for reconstruction, allowing the SRConvNext to perform well even if the degradation kernel deviates from the real-world scenario. In experimental terms, three levels of noise and five Gaussian blur kernels are considered on the NWPU-RESISC45 remote sensing image dataset for synthesizing degraded remote sensing images to train and test. Compared to existing super-resolution methods, the experimental results demonstrate that our proposed approach achieves significant reconstruction advantages in both quantitative and qualitative evaluations. Additionally, the UCMERCED remote sensing dataset and the real-world remote sensing image dataset provided by the “Tianzhi Cup” Artificial Intelligence Challenge are utilized for further testing. Extensive experiments show that our method delivers more visually plausible results, demonstrating the potential of real-world application.

Funder

Science and Technology Department of Jilin Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3