Numerical Analysis of the Effects of Crack Characteristics on the Stress and Deformation of Unsaturated Soil Slopes

Author:

Yang Liuxin,Liu EnlongORCID

Abstract

Cracks induced by evaporation or rainfall have a great influence on the stability of unsaturated soil slopes, which can lead to landslides during the rainfall process. In order to study the effect of crack characteristics on the evolution of stress and deformation of unsaturated soil slopes, a series of numerical analyses under different conditions were performed using a coupled elastoplastic finite element program that we developed for unsaturated soil. When carrying out the numerical analyses, the effective stress for unsaturated soil proposed by Bishop and an elastoplastic double-hardening constitutive model for the soil skeleton were employed. The varying parameters, including the crack location, the discharge speed, evaporation rate, infiltration rate, and tensile strength, were investigated to study the coupling process of pore water pressure and deformation in the process of evaporation and rainfall infiltration. The numerical results showed that the minimum pore water pressure of the soil slope at the end of evaporation/rainfall decreased gradually and the crack width increased gradually as the crack set closer to the slope; the larger the discharge speed of pore air, the greater the crack width. With the increase in the evaporation rate, the pore water pressure of the soil slope reduced and the crack initiated earlier and became wider. As the infiltration rate increased, the pore water pressure of the soil slope and the crack width increased, but the decreasing duration became shorter. The change of tensile strength had little effect on the pore water pressure, but the development of the crack width changed with evaporation and rainfall infiltration.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Instability mechanism of highway slope in arid areas and its stability analysis;Feng;Rock Soil Mech.,2009

2. Effects of near-surface environmental conditions on instability of an unsaturated soil slope

3. Response of a residual soil slope to rainfall

4. Geotechnical centrifuge modelling of slope failure induced by ground water table change;Timpong,2007

5. Hydrological Effects of Live Poles on Transient Seepage in an Unsaturated Soil Slope: Centrifuge and Numerical Study

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3