Destabilization Mechanism and Stability Study of Collapsible Loess Canal Slopes in Cold and Arid Regions

Author:

Xu Haozhen12,Zhang Lingkai12ORCID,Shi Chong123

Affiliation:

1. College of Water Resources and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China

2. Xinjiang Key Laboratory of Water Conservancy Engineering Safety and Water Disaster Prevention and Control, Urumqi 830052, China

3. Geotechnical Research Institute, Hohai University, Nanjing 210098, China

Abstract

The combination of seasonal shutdowns, water conveyance, cold, and drought can easily lead to the deterioration of the anti-seepage system and loess foundation of the canal, which contributes to the destruction of the slope. To reveal the failure mechanism of the collapsible loess canal slope, this paper is based on the results of laboratory tests and adopts numerical simulations to analyze the stability of the canal slope under different conditions. The results show that the shear strength indexes and elastic modulus E of loess decrease following an exponential pattern with the increase in wetting-drying and freezing-thawing (WD-FT) cycles. The height of the seepage overflow point yields little effect on the water level behind the impermeable membrane, whereas the height of the water level has a significant effect. In the operation period, the slope under any working conditions is in a relatively stable state. However, the slope with a water level of 4.5 m behind the impermeable membrane tends to be unstable after three WD-FT cycles during the shutdown period. By replacing the surface-degraded loess with sand gravel and picking a depth of 0.9–1.2 m, the slope will maintain a long-term stable state.

Funder

Outstanding Youth Science Fund Project of Xinjiang Uygur Autonomous Region of China

Key R & D Tasks of Xinjiang Uygur Autonomous Region of China

Research Project of Key Laboratory of Water Conservancy Project Safety and Water Disaster Prevention and Control in Xinjiang

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3