A Multi-Source Power System’s Load Frequency Control Utilizing Particle Swarm Optimization

Author:

Qu Zhengwei12ORCID,Younis Waqar12ORCID,Wang Yunjing12,Georgievitch Popov Maxim3ORCID

Affiliation:

1. School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China

2. Key Laboratory of Power Electronics for Energy Conservation and Drive Control of Hebei Province, Yanshan University, Qinhuangdao 066004, China

3. Department of Electric Power Station and Automation of Power Systems, The Institute of Energy, Peter the Great Saint-Petersburg Polytechnic University, 195251 Saint Petersburg, Russia

Abstract

Electrical power networks consist of numerous energy control zones connected by tie-lines, with the addition of nonconventional sources resulting in considerable variations in tie-line power and frequency. Under these circumstances, a load frequency control (LFC) loop gives constancy and security to interconnected power systems (IPSs) by supplying all consumers with high-quality power at a nominal frequency and tie-line power change. This article proposes employing a proportional–integral–derivative (PID) controller to effectively control the frequency in a one-area multi-source power network comprising thermal, solar, wind, and fuel cells and in a thermal two-area tie-line IPS. The particle swarm optimization (PSO) technique was utilized to tune the PID controller parameters, with the integral time absolute error being utilized as an objective function. The efficacy and stability of the PSO-PID controller methodology were further tested in various scenarios for proposed networks. The frequency fluctuations associated with the one-area multi-source power source and with the two-area tie-line IPS’s area 1 and area 2 frequency variations were 59.98 Hz, 59.81 Hz, and 60 Hz, respectively, and, in all other investigated scenarios, they were less than that of the traditional PID controller. The results clearly show that, in terms of frequency responses, the PSO-PID controller performs better than the conventional PID controller.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3