An Affinity Propagation-Based Self-Adaptive Clustering Method for Wireless Sensor Networks

Author:

Wang JinORCID,Gao YuORCID,Wang Kai,Sangaiah ArunORCID,Lim Se-JungORCID

Abstract

A wireless sensor network (WSN) is an essential component of the Internet of Things (IoTs) for information exchange and communication between ubiquitous smart objects. Clustering techniques are widely applied to improve network performance during the routing phase for WSN. However, existing clustering methods still have some drawbacks such as uneven distribution of cluster heads (CH) and unbalanced energy consumption. Recently, much attention has been paid to intelligent clustering methods based on machine learning to solve the above issues. In this paper, an affinity propagation-based self-adaptive (APSA) clustering method is presented. The advantage of K-medoids, which is a traditional machine learning algorithm, is combined with the affinity propagation (AP) method to achieve more reasonable clustering performance. AP is firstly utilized to determine the number of CHs and to search for the optimal initial cluster centers for K-medoids. Then the modified K-medoids is utilized to form the topology of the network by iteration. The presented method effectively avoids the weakness of the traditional K-medoids in aspects of the homogeneous clustering and convergence rate. Simulation results show that the proposed algorithm outperforms some latest work such as the unequal cluster-based routing scheme for multi-level heterogeneous WSN (UCR-H), the low-energy adaptive clustering hierarchy using affinity propagation (LEACH-AP) algorithm, and the energy degree distance unequal clustering (EDDUCA) algorithm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 140 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3