Feature-Weighted Naive Bayesian Classifier for Wireless Network Intrusion Detection

Author:

Wu Hongjiao1ORCID

Affiliation:

1. Henan Vocational College of Tuina, Luoyang 471000, China

Abstract

Objective. Wireless sensor networks, crucial for various applications, face growing security challenges due to the escalating complexity and diversity of attack behaviours. This paper presents an advanced intrusion detection algorithm, leveraging feature-weighted Naive Bayes (NB), to enhance network attack detection accuracy. Methodology. Initially, a feature weighting algorithm is introduced to assign context-based weights to different feature terms. Subsequently, the NB algorithm is enhanced by incorporating Jensen–Shannon (JS) divergence, feature weighting, and inverse category frequency (ICF). Eventually, the improved NB algorithm is integrated into the intrusion detection model, and network event classification results are derived through a series of data processing steps applied to corresponding network traffic data. Results. The effectiveness of the proposed intrusion detection algorithm is evaluated through a comprehensive comparative analysis using the NSL-KDD dataset. Results demonstrate a significant enhancement in the detection accuracy of various attack types, including normal, denial of service (DoS), probe, remote-to-local (R2L), and user-to-root (U2R). Moreover, the proposed algorithm exhibits a lower false alarm rate compared to other algorithms. Conclusion. This paper introduces a wireless network intrusion algorithm that not only ensures improved detection accuracy and rate but also reduces the incidence of false detections. Addressing the evolving threat landscape faced by wireless sensor networks, this contribution represents a valuable advancement in intrusion detection technology.

Funder

Henan Vocational College of Tuina

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3