A survey on network lifetime maximization using data aggregation trees

Author:

Kale Preeti A.1ORCID,Nene Manisha J.2

Affiliation:

1. Department of Computer Engineering and Technology Dr. Vishwanath Karad MIT World Peace University Pune India

2. Defence Institute of Advanced Technology Pune India

Abstract

SummaryThe sensor networks are the primary and essential components on which the world of Internet of Things (IoT) is built. IoT empowers smart communication, computation, and sensing capabilities. In sensor networks, the data are collected by the sensor nodes and sent to the sink along a communication path. These communication paths are collaboratively established by the nodes and the sink. By incorporating energy‐efficient data gathering techniques, the lifetime of these networks is improved. The major contribution of the study in this work is to provide a survey of various techniques for data aggregation (DA) and the employed algorithmic strategies that facilitate and influence network lifetime (NL) in these environments. DA in wireless sensor networks (WSN), IoTs, and cloud computing extend the lifetime of these networks since it enables efficient merging of traffic flows, thus reducing transmissions and energy consumption of devices. In sensor networks, data aggregation tree (DAT)‐based routing facilitates energy‐efficient routing that extends NL. NL maximization using DATs constructs DATs with optimal NL and is a known NP‐complete problem. Subsequently, the study in this work surveys the various approaches employed by researchers to construct DATs and discusses techniques for DAT scheduling. This work further explores various sensor deployment techniques and discusses real world scenario in which NL is influenced by uncertainty in communication links. Finally, the study in this survey highlights the achievements in realizing NL improvement using DAT and identifies the limitations and research challenges.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3