Hybrid Signal-Processing Method Based on Neural Network for Prediction of NO3, K, Ca, and Mg Ions in Hydroponic Solutions Using an Array of Ion-Selective Electrodes

Author:

Cho Woo-JaeORCID,Kim Hak-Jin,Jung Dae-Hyun,Han Hee-Jo,Cho Young-Yeol

Abstract

In closed hydroponics, fast and continuous measurement of individual nutrient concentrations is necessary to improve water- and nutrient-use efficiencies and crop production. Ion-selective electrodes (ISEs) could be one of the most attractive tools for hydroponic applications. However, signal drifts over time and interferences from other ions present in hydroponic solutions make it difficult to use the ISEs in hydroponic solutions. In this study, hybrid signal processing combining a two-point normalization (TPN) method for the effective compensation of the drifts and a back propagation artificial neural network (ANN) algorithm for the interpretation of the interferences was developed. In addition, the ANN-based approach for the prediction of Mg concentration which had no feasible ISE was conducted by interpreting the signals from a sensor array consisting of electrical conductivity (EC) and ion-selective electrodes (NO3, K, and Ca). From the application test using 8 samples from real greenhouses, the hybrid method based on a combination of the TPN and ANN methods showed relatively low root mean square errors of 47.2, 13.2, and 18.9 mg∙L−1 with coefficients of variation (CVs) below 10% for NO3, K, and Ca, respectively, compared to those obtained by separate use of the two methods. Furthermore, the Mg prediction results with a root mean square error (RMSE) of 14.6 mg∙L−1 over the range of 10–60 mg∙L−1 showed potential as an approximate diagnostic tool to measure Mg in hydroponic solutions. These results demonstrate that the hybrid method can improve the accuracy and feasibility of ISEs in hydroponic applications.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3