Decision-tree-based ion-specific dosing algorithm for enhancing closed hydroponic efficiency and reducing carbon emissions

Author:

Cho Woo-Jae,Gang Min-Seok,Kim Dong-Wook,Kim JooShin,Jung Dae-Hyun,Kim Hak-Jin

Abstract

The maintenance of ion balance in closed hydroponic solutions is essential to improve the crop quality and recycling efficiency of nutrient solutions. However, the absence of robust ion sensors for key ions such as P and Mg and the coupling of ions in fertilizer salts render it difficult to effectively manage ion-specific nutrient solutions. Although ion-specific dosing algorithms have been established, their effectiveness has been inadequately explored. In this study, a decision-tree-based dosing algorithm was developed to calculate the optimal volumes of individual nutrient stock solutions to be supplied for five major nutrient ions, i.e., NO3, K, Ca, P, and Mg, based on the concentrations of NO3, K, and Ca and remaining volume of the recycled nutrient solution. In the performance assessment based on five nutrient solution samples encompassing the typical concentration ranges for leafy vegetable cultivation, the ion-selective electrode array demonstrated feasible accuracies, with root mean square errors of 29.5, 10.1, and 6.1 mg·L-1 for NO3, K, and Ca, respectively. In a five-step replenishment test involving varying target concentrations and nutrient solution volumes, the system formulated nutrient solutions according to the specified targets, exhibiting average relative errors of 10.6 ± 8.0%, 7.9 ± 2.1%, 8.0 ± 11.0%, and 4.2 ± 3.7% for the Ca, K, and NO3 concentrations and volume of the nutrient solution, respectively. Furthermore, the decision tree method helped reduce the total fertilizer injections and carbon emissions by 12.8% and 20.6% in the stepwise test, respectively. The findings demonstrate that the decision-tree-based dosing algorithm not only enables more efficient reuse of nutrient solution compared to the existing simplex method but also confirms the potential for reducing carbon emissions, indicating the possibility of sustainable agricultural development.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3